
Introduction to RTOS

Kizito NKURIKIYEYEZU, Ph.D.



Readings

Read Chap 6 of Simon, D. E.
(1999). An Embedded
Software Primer

1Readings are based on Simon, D. E. (1999). An Embedded Software Primer.
Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 1 / 8



Real-time operating system
A real-time operating system (RTOS) is a program that schedules execution in
a timely manner, manages system resources, and provides appropriate
developing application code1.
RTOS are complex software architecture needed to handle multiple tasks,
coordination, communication, and interrupt handling
Desirable RTOS properties: use less memory, application programming
interface, debugging tools, support for variety of microprocessors,
already-debugged network drivers
Contiki source code, FreeRTOS, Zephyr Project2, 3

1https://en.wikipedia.org/wiki/Real-time_operating_system
2Wikipidia provide an extensive list of existing RTOS at

https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems
3The The Zephyr Project provides a promising RTOS for IoT devices. It is designed for connected

resource-constrained devices, built to be secure and safe. An interested reader can read more at
https://www.zephyrproject.org/

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 2 / 8

https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems
https://www.zephyrproject.org/


TAB 1. Desktop Operating systems vs Real-time operating systems

Desktop OS Real-time OS

At boot-time, the OS takes control and sets up environment At boot, application takes control and tarts the RTOS
Application run under the OS and independently of each other Applications are linked with the RTOS and are tied together
Multiuser, thus need more security and protection Usually single user and no sacrifice security for performance
Limited configuration Extensive configuration: allow to leave out all what you don’t need, e.g. file managers, I/O

drivers, utilities, and even memory management
OS and application run in different address space Both the RTOS and applications run in the same address space. Thus, the RTOS is less

protected
Require large memory Usually use little memory
Big or Large User Interface Management Limited No. of User Interface
Time response of OS is not deterministic The time respond of TROS is deterministic

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 3 / 8



The need for an RTOS

FIG 1. Architecture without an RTOS

FIG 2. Architecture with an RTOS

3©Shawn Hymel & Digi-Key Electronics. Licensed under the Creative Commons CC BY 4.0 license.
Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 4 / 8



The need for an RTOS

FIG 1. Architecture without an RTOS
FIG 2. Architecture with an RTOS

3©Shawn Hymel & Digi-Key Electronics. Licensed under the Creative Commons CC BY 4.0 license.
Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 4 / 8



TAB 2. Bare Metal vs. Operating Systems

Bare metal RTOS Desktop OS

Good for small devices (i.e., small MCU) ¥ ¥ q

Level of application hardware control Complete Medium None
Ability to multitask None Fair Excellent
Overhead None Minimal High
Efficient memory usage ¥ ¥ q

Community support q ¥ ¥

Scalability and portability q Medium Excellent

1Bare-metal programming is a term for programming that operates without various layers of
abstraction e.g. without an operating system supporting it.

2https://www.nabto.com/bare-metal-vs-rtos-vs-os/
3https://www.embedded.com/why-a-bare-metal-developer-moved-to-operating-systems/

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 5 / 8

https://en.wikipedia.org/wiki/Bare_machine
https://www.nabto.com/bare-metal-vs-rtos-vs-os/
https://www.embedded.com/why-a-bare-metal-developer-moved-to-operating-systems/


Why use an RTOS in your project?
Resource managment—Maximum utilization of devices and systems. Thus
more output from all the resources.
Easy coding—maintainability/extensibility, modularity, easy testing, code reuse
Abstracting timing information—helps not worry about calculating timers
Priority-based scheduling—automatically decide which task should be
executing at any particular time
Reduce errors—Commercial (or open source) RTOS well-debugged and have
fewer bugs compared to writing your own scheduler
Background tasks—Background tasks are performed when the system is idle.
This ensures that things such as CPU load measurement, background CRC
checking etc will not affect the main processing

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 6 / 8



Why use an RTOS in your project?
Task prioritization can help ensure an application meets its processing
deadlines
Abstracting away timing information from applications
Well-defined interfaces help in team development
Easier testing with well-defined independent tasks
improved efficiency with event-driven software
Flexible interrupt handling
Easier control over peripherals
Power Management—allow the processor to spend more time in a low power
mode.

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 7 / 8



Why NOT to use an RTOS
simple systems—always use the simplest architecture when possible
Limited resources—If the MCU is limited (e.g., in RAM, stack memory,
processor capabilities), do not use an RTOS
Functionality—The decision will be based on what your device will do:

Does the application have multiple concurent tasks?
Does your application’s tasks need to communicatewith each other, or to
synchronise with each other?
Does the application include stacks such as Bluetooth, USB, WiFi, TCP/IP, etc.?
Will the systems time management be simplified by using an RTOS?
Is deterministic behavior needed?
Do program tasks need the ability to preempteach other?
Does the MCU have at least 32 kB of code space and 4 kB of RAM?

Kizito NKURIKIYEYEZU, Ph.D. Introduction to RTOS November 1, 2022 8 / 8



The end


	The end

